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Abstract. The behaviour under pressure of the real-space distribution of the electronic 
charge density of lithium hydride is determined from first principles using the density 
functional theory, with norm-conserving pseudopotentials and Ceperley-Alder exchange. 
The influence of zero-point vibrations on the ground-state properties is discussed. The 
integrated chargesurrounding Li and Hisdetermined quantitatively andstudied as afunction 
of pressure. 

1. Introduction 

Known to a large public as the source of negative hydrogen ions in experiments on 
fusion, lithium hydride (LiH) is interesting to solid state physics because it provides a 
prototype of extreme ionic bonding; it naturally raises the question of how far ideas 
pertinent to alkali halides can be extrapolated to the hydrides. Owing to its privileged 
position near the top of the periodic system, the electronic and certain related properties 
of LiH have been addressed for several decades [ l ,  21. Hartree-Fock calculations of 
cohesive energy (for a review see, e.g., [3]) [ 4 7 ]  and of the electronic band structure [8- 
101 have been performed. There have also been a number of theoretical and experimental 
studies on its equation of state [9, 11-14], elasticity [15], x-ray [16], Brillouin [17] and 
Raman scattering [ ls] ,  phonons [19-221 and other properties [23]. In many cases, LiH 
was among the veryfirst substances studied by the above methods. Judging by the efforts 
invested, one can see that the technical simplifications derived from the small number 
of electrons, which were crucial to the techniques available years ago, are largely 
counterbalanced by the difficulties brought about by the small and light atoms; the deep 
electron-ion potentials, which are difficult to deal with, and the prominent effects of the 
zero-point motion are consequences of the top-of-the-table position too. 

Recently, the interest in LiH has been revived, mainly owing to experimental work 
on x-ray scattering [24,25] and Compton profiles [26]. Very little is known, both theor- 
etically and experimentally, on elementary characteristics, e.g. valence charge distri- 
bution [27]. It may be the success of the Born model that has accredited the idea of a 
perfectly ionic crystal although the doubts about the validity of this representation 
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were expressed [2] as early as 1936 and, among others, the presence of a homopolar 
contribution to the bonding was suggested [4]. 

In what follows, we attempt to give a quantitative picture of the pressure variation 
in the real space of the distribution of the electronic charge density in LiH which we 
calculate within the local density approximation (LDA) [28], using norm-conserving 
pseudopotentials [29] and Ceperley-Alder exchange [30]. As a strong charge transfer 
from Li to H is found, we propose different quantitative estimates for the integrated 
charges on atoms and compare them with experiment. The role of zero-point vibrations 
in the determination of ground-state properties is discussed as well. The paper is organ- 
ised as follows: the method for dealing with the electronic energy and the inclusion 
of zero-point vibrations are discussed in § 2, together with our results on structural 
properties. The electronic energy levels and the pressure dependence of charge densities 
are given in 9 3. The results are further discussed in § 4. A short summary of the first 
results has been published earlier [27]. 

2. Calculation of energy: the role of zero-point vibrations 

In what follows the density functional (DF) theory [28] is applied in the local density 
approximation (LDA) using the plane-wave basis [31], with the norm-conserving pseu- 
dopotentials [29] and the exchange-correlation by the Ceperley-Alder form [30]. Most 
of the results shown below were obtained with plane-wave expansions limited by a 
kinetic energy of 60 Ryd (about 900 waves at a = 4.08 A) and the cut-offs up to 72 Ryd 
(about 1200 waves) were used in the tests; the plane waves beyond 48 Ryd were treated 
by Lowdin perturbation theory. A set of ten special k-points was used for sampling the 
Brillouin zone, their number was increased up to 28 points in tests. 

The ground-state energy ELDA of the system of valence electrons +2 cores per unit 
cell, calculated as a function of lattice parameter a, is shown in figure 1; the external 
pressurep = - d E / d  Vevaluated using the ‘stress theorem’ E321 is also given. It isstraight- 
forward to connect the calculated points by the Murnaghan [33] equation 

E - Eo = -(BoV,/B;,){[(V/Vo)l-Bb - 1]/(1 - Bb)  - (V/Vo - l)} 

and to determine the position of the minimum and the second and third derivatives of 
ELDA(a)-the quantities which, in other compounds, would be readily identified with 
the equilibrium lattice constant ao, bulk modulus B and its pressure derivative B ’ ;  these 
values are given in table 1, which illustrates convergence of the static properties with the 
number of plane waves and number of sampling points. It allows us to estimate the 
uncertainties consequent on the finite plane-wave cut-offs to be approximately 1% for 
a. and 8% for Bo and the errors due to the limited number of special points not to exceed 
0.6% and 4%, respectively. One can see also in figure 1 that with the 60 Ryd cut-off the 
calculation of static properties is converged because the pressure evaluated directly by 
the DF method (full curve) agrees well with that obtained as the derivative of the E(a)  
curve (broken curve), thus suggesting [34] that the extreme values for the uncertainties 
in a. do not exceed 1%; at the present stage, we do not consider it useful to extend the 
precision further, in view of the still large uncertainties which influence the results for 
other physical reasons and which are discussed further on. 

At this point,the major difficulty in assessing the static equilibrium consists in prop- 
erly accounting for the effect of zero-point vibrations. At T = 0 the crystal’s total energy 
consists of the energy ELDA of the system of electrons + (static) ions (figure l ) ,  to which 
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Figure 1. Equation of state of LiH (zero- 
point vibrations not included). (a)  Energy 
ELDA calculated at different lattice con- 
stantswithin  the^^^. With the plane-wave 
cut-offs 36 Ryd (- - -) and 60 Ryd (-) 
the position of the minimum, the second 
and third derivatives of ELDA are very little 
different. ( b )  Isotropic pressure calculated 
directlv within the LDA scheme (---) com- I 

I r--- ’ 4. ’ 
( b )  

pared with that obtained by differentiating 
theELDA(a)above(p  = - a E / a V ) ( . . . . )  
Both curves correspond to the same plane- 
wave cut-off of 60Ryd and their agree- 
ment indicates the degree of convergence 

3 3  3 9  1% difference in the position of equi- 
librium (the zero of p ( a ) )  

100 - - 
2 

E a 
-100 

2 7  

Lot t ice constant ( A )  

Table 1. Theconvergenceofthe ‘staticequilibrium’evaluatedat the minimumof theELDA(V) 
(zero-point vibrations not included), assuming the Murnaghan equation of state (1). E 2  is 
the plane-wave cut-off, and the waves with kinetic energy between E ,  and EZ were treated 
as theLowdinperturbation; 1 = Owaschosenasthe ‘local’componentofthepseudopotential. 
The pressurep(ao) at ‘static equilibrium’ was evaluated directly within the DF scheme, using 
the ‘stress theorem’; its closeness to zero indicates the degree of convergence of the energy 
calculations. 

Number of 
(Ryd) (Ryd) points (A) W a r )  (-1 (kbar) (eV cell-.’) waves at a. 

ELDA E ,  E 2  Special an Bo BA P ( Q d  

12 12 2 3.32 0.68 4.05 -110.3 -24.1 80 
12 12 10 3.45 0.55 2.55 -97.7 -23.8 84 
12 12 28 3.43 0.57 3.57 -86.4 -23.8 86 
36 36 10 3.35 0.59 3.83 -28.7 -24.5 424 
48 60 10 3.34 0.66 3.57 -11.3 -24.2 905 

Experiment 4.061 [24] 0.31 [15] 3.81 [15] 
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must be added the energy of thezero-point vibrations E o  = 2 ihw,;  the latter contribution 
is volume dependent as well, so that the static equilibrium (the minimum of ELDA(V) + 
Eo(V)) does not coincide with the minimum of ELDA(V). 

In most substances studied by the DF method so far, the contribution of Eo( V) is small 
and can be neglected; in cases where this effect was considered (e.g. NaCl[35] or metallic 
Li [36]) the influence of E o  is weak and the estimated correction to the lattice constants 
is of the order of 1%, always in the sense of expanding the lattice. In LiH, however, the 
zero-point vibrations can be expected to play a more important role than in crystals of 
heavier atoms; the order of magnitude of the shift in a ,  is not apriori  clear. 

In order to calculate the contribution of the zero-point motion precisely, complete 
knowledge of the vibrational spectrum is required. The phonon dispersion in LiH was 
measured [20] by inelastic neutron scattering, but detailed knowledge of the volume 
dependence of the phonon spectra is missing. An estimate of Eo(V) can be attempted in 
terms of simple models: in a diatomic crystal, the energy per unit cell 

. 6N 

can be evaluated in the Debye approximation as 
6 0  = 9 k B @ D  

in agreement with the expression derived in [36] for a monatomic crystal. As the pressure 
variation is generally different for the acoustic and optic modes, we retain the Debye 
approximation only for the acoustic modes and deal with the optic modes separately, 
i.e. within the Einstein approximation; thus becomes 

60 = i k g O ~  + 3 X ihCO(TO(r)) ( 3 b )  

5 0   BOD + 2 X i h O J ( T O ( r ) )  + &O(LO(r)). (3c) 

or 

To estimate the volume dependence to(V) we assume, as in [36] that kBOD varies 
with volume as the square root of the bulk modulus B and construct the B(V) from the 
known values of Bo and BA = dB(V)/dp at Vo, assuming the (Murnaghan) equation of 
state. This leads to 

VB( V)/B( v, ) = (V(J /V) %’*. (4a )  

The linearised form of this equation, for Vvery little different from Vo, is 

WV)/B(Vo> = 1 - (Bb/WV - V,>/Vol ( 4 b )  

as was appliedin [36]. The variation of the To(r) and Lo(r) eigenfrequencies with volume 
is described by the respective mode Gruneisen parameters y = - (d w/o)/(d V/V) which 
yields 

4V)/W(VO> = (v/vo>-y ( 5 7 )  

or, in the linearised form, 

4 V )  = 4vo> - dVO>Y(V - vo>/vo. 
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Figure 2.Zero-point vibrations in LiH and 
equation of state. (a )  Different approxi- 
mations for the zero-point energy eo and 
their variation withvolume: -.-, D*e 
approximation &,OD scaled as d B ( a ) ,  
equation (4a); --- linearised form of the 

-, i h O ( T O ( r ) ) ,  taking for a Griineisen 

y = 1.8. (b) The total energy (-) 
obtained as the sum of ELDA (---) (ident- 
ical with the full curve in figure l ( a ) )  and 

Debye approximation, equation (4b); 

parametery = 1,2;....,lhw(Lo(r)),with 

of Ell given byequation (3c) (the chain, full 
and dotted curves in ( a ) ) .  The inclusion of 

equilibrium by approximately 8% to the 
the zero-point vibrations shifts the static 

I I I I I 

Calculated from ELDA (a) curve in figure l ( a )  
Corrected for zero-point motion 

Following equation (3a), assuming (4a) 
Following equation (3a), assuming (46) 
Following equation (3b), assuming (4a) 
and (5a) 
Following equation (3c), assuming (4a) 
and (sa) 

Experiment 

3.34 

3.59 
3.40 

3.54 

3.60 

4.061 [24] 

0.66 3.57 

0.59 3.30 
0.45 3.92 

0.57 3.30 

0.57 3.26 

0.31 [15] 3.81 [15] 

With the experimental values of Vo [24], 0 = 920 K [37], Bo = 0.3 Mbar, BA = 3.8 
[15], y(To(r)) = 1.2 and y(Lo(l7)) = 1.8 [17], we obtain the volume variation in the 
terms in (3) shown in figure 2(a);  the corrected equation of state which is shown in figure 
2(b) leads to the prediction for ao, Bo and Bh summarised in table 2. 

This way of taking into account the zero-point vibrations deserves some comments; 
with the corrections evaluated above, the assessment of the static equilibrium is no more 
truly ab initio because the experimental values have been used for ao, Bo and Bh. 
However, the procedure could be accomplished without any experimental inputs-at 
least within the approximations (3)-(5)-because the TO(r)  frequencies can be calcu- 
lated, at any given crystal volume, using the 'frozen-phonon' method [38]. The same 
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holds for B(V);  the bulk modulus can be evaluated from its definition at any Vusing the 
calculated equation of state E(V)-be it in its ‘uncorrected’ version ELDA(V) or the 
‘corrected’ form ELDA( V) + go( V ) .  As the Eo( V) depends on B(V) ,  it would be a matter 
of a few iterations to obtain B(V) and Eo(V) consistent with each other; the approxi- 
mations (3)-(5) thus allow go to be accounted for without any experimental input. 

We can see from table 2 that the zero-point motion shifts the equilibrium lattice 
constant by at least 2%. The estimate, obviously, depends on the assumption which one 
adopts for the volume variation in go; however, all approximations which were not 
linearised (second, fourth and fifth rows in table 2) suggest a correction of between +6 
and +8%. It is likely that, using equations (4a) and (5a) in order to describe the 
departures from the experimental equilibrium as large as 15% in lattice constant, 
one extrapolates the simple definitions (Griineisen) and approximations (Murnaghan) 
beyond the interval on which they were measured or on which their validity can be relied 
upon. The correction of +8% to a. suggested by the fifth row in table 2 should thus be 
considered as the upper limit for the estimate of the influence of the zero-point motion. 
This implies that the present disagreement between the calculated equilibrium and the 
experimental must be caused by other reasons that the zero-point motion; they will be 
discussed in B 4. 

3. Electronic properties 

3.1. Charge densities 

The calculated charge (pseudo-charge) density and its real-space distribution are shown 
in figures 3 ,  4 and 5 .  It can be seen in figure 3(a) ,  which is a linear plot along the cube 
edge, that nearly all electrons are piled up on the H atom, the Li core is surrounded by 
very little charge. When pressure is applied, the shape of the distribution is almost 
unaltered but a part of the charge is transferred into the rare ‘empty’ space left, which 
still exists near the centre of the Li-H cube diagonal (see figure 3 ( b ) )  and in the middle 
of the second-neighbour Li-Li and H-H ‘bonds’ (see figures 3(c)  and 3 ( d ) ) .  The contour 
plots in figures 4 and 5 give the distribution in the (100) and (111) planes, at the lattice 
constant a = 3.7 A, which is our calculation nearest to the predicted static equilibrium 
( a  = 3.60 A). It can be inferred from these plots that the essential part of the charge is 
spherically distributed around the H sites (figures 4(a) and 5(a)) ,  illustrating the idea of 
a nearly perfect ionic bonding. The remaining charge is distributed over the rest of the 
volume and only the plots giving the low-density part of the distribution (figures 4(b), 
5(b) and 5 ( d ) )  show any departures from the spherical distribution. These conspicuous 
departures from the spherical shape amount, however, to fairly little; for example, on a 
sphere around Li with the radius 0 . 1 9 ~  (about 40% of the Li-H distance; see figure 
4(b)), charge varies between 0.9 and 1.2 electrons cell-l. The H ion is also only slightly 
aspherical, and only in the low-density region; for example, the radius of the last closed 
contour around H (n(r) = 1.3 electrons cell-’; see figure 4(b)) varies from 0 . 3 0 ~  to 
0 . 3 3 ~ .  In the high-density region (contours of 2 electrons cell-’ or more) the distribution 
is perfectly spherical. Under compression, figures 4(a) and 5(a) remain essentially 
unchanged-although labelling of the contours would be modified, as can be inferred 
from figure 3-and the low-density contours around Li (figure 4(b)) become even more 
aspherical, because the charge keeps filling the space between the second neighbours. 

Qualitatively, figure 3 allows us to conclude that most of the electronic charge is 
transferred from Li to H.  Any more exact and quantitative statement will depend on 
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Li L i  -H H- 
Figure 3. Variation is the pseudo-charge density of LiH along (a )  [loo] (the cube edge), ( b )  
[111] (the cube main diagonal) and (c) [110] and (d)  the effect of hydrostatic pressure: -, 
3.7 A; ---, 3.3 A; . . . ., 3.5 A. The unit of length is the lattice constant a,  and the unit cell 
volume is a3/4. 

the criterion which we choose for defining the H or the Li region. The simplest and 
unambiguous way is to divide space into equal cubes of side a /2  and having the H or Li 
atom in the centre. The cubes fill the space entirely and an integration of the charge 
density over the cubic regions gives for the (pseudo-)charge 1.46 electrons around H 
and 0.54 electrons around Li. There is good agreement between these numbers and 
the experimental value of 1.52 electrons in the H cube obtained in [16] from x-ray 
measurements. 

The main advantage of the cubic regions is in their unambiguous definition and in 
the possibility of comparing the integrated charge with the experimental data. It is 
nevertheless preferrable (although more subjective) to have a definition of the H and Li 
regions which reflects the actual shape of the charge distribution and which is closer to 
the spheres than to the cubes. Taking the largest closed contours around H and Li, we 
can consider the charge inside them as belonging to H or Li; these are contours 1.3 and 
1.2, respectively (see figure 4(b)). Simplifying the geometry slightly, we integrate n(r) 
over the spheres with radii 0 .303~ and 0 . 1 9 7 ~  which gives a pseudo-charge of 1.45 
electrons on H and 0.10 electrons on Li; the remaining charge of 0.45 electrons is 
distributed in the interstitial region. This way of assigning charge to spheres rather than 
inside the contours leads to a small underestimation of both the H and Li charges, i.e. 
to an overestimate of the amount of charge in the interstitial region. It seems somewhat 
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(0) 

H Li H H L i  H 
Figure 4. Contour plots of the pseudo-charge density in the plane (loo), at a = 3.7 A (i.e. 
close to the calculated equilibrium). The H atoms are in the centre and at the corners of the 
square; the Li atoms are at the sides. (a) The essential part of the electronic charge is 
spherically distributed around the H sites. The small square contours in the centre are due 
to the finite size of the mesh used. (b )  Plot complementary to (a ) ,  displaying the low-density 
details of the n(r)  (G2.0 electrons cell-’) which could not be resolved in the scale of (a) .  
Units of n(r)  are the same as in figure 3; the contour interval is 1.5 electrons cell-’ in (a )  and 
0.1 electron cell-’ in (b ) .  

surprising that the H charge is nearly the same, whether integrated over the cube or over 
the sphere, but inspection of figure 4(b) reveals that a cube of side a/2 around the H 
occupies roughly the same space as the sphere. For comparison, the APW calculations in 
[9] using muffin-tin spheres with radii 0 . 2 6 2 ~  and 0.238a accumulated charges of 1.13 
electrons around H and 0.259 electrons (plus 2 electrons from the core) around Li. 

All integrations above were performed at 3.7& i.e. close to the calculated 
equilibrium. Under compression, the charge in the ‘H volume’ is reduced-although 
much less than the volume itself; with a reduced from 3.7 to 3.3 A, in the H cube the 
charge decreases from 1.46 to 1.43 electrons, in the H sphere it increases from 1.45 to 
1.36 electrons and in the Li sphere it increases from 0.10 to 0.12 electrons. In dealing 
with pressure variations, it is the idea of the ‘last closed contour’ that we maintain under 
compression: the sphere radii become 0 . 2 9 7 ~  and 0.203a, respectively. 

The above values should not be given more significance than they really have. All 
integrations are very sensitive to the choice of the sphere radius R and the departures of 
n(r) from sphericity were not taken into account. It should also be stressed that the static 
charges discussed here are not to be confounded with the effective charges which bring 
about the m-To(r) split in the phonon spectra. 

3.2. Band structure 

Although the DF eigenvalues are known to underestimate the gaps, we have plotted in 
figure 6 the band structure of LiH, in order to provide a reference and to compare with 
other schemes; consistently with the charge densities in figures 4 and 5 the q ( k )  were 
evaluated at a = 3.7 A, i.e. close to the calculated equilibrium. The overall ‘topology’ 
of figure 6 agrees well with other band-structure calculations [&lo]. The minimum gap 
(2.14 eV) situated at X is certainly a strongly underestimated consequence of the LDA. 
Let us remember that the Hartree-Fock calculations in [6] and [7] (expected to over- 
estimate the gaps) obtained, respectively, 14.5 and 10.5 eV; with correlation incor- 
porated approximately into the Hartree-Fock scheme in [8], the gap became 6.61 eV. 
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Figure 5. Contour plots of pseudo-charge density in the plane (ill), at a = 3.7 A. (a) ,  ( b )  
The plane contains only H atoms located at the centres of the nearly spherical contours: (a) 
plot displaying the high density of n(r)  ( 3 2  electrons cell-’); ( b )  same as in figure 4(b). (c), 
(d )  Same as (a ) ,  (b )  but for the (111) plane containing only Li atoms located at the centre of 
the nearly spherical contours. 

Our present value is consistent with the value of 2.31 eV obtained in [9], using the same 
LDA approximation within the APW scheme. No experimental data are available for 
comparison-not in the published literature, at least. The LDA and Hartree-Fock results 
are likely to be the lower and upper bounds to reality. 

4. Discussion 

Some of the results shown in 0 3 are pertinent to static equilibrium; in the absence of 
better agreement with experiment, it is the calculationsclose to the predicted equilibrium 
(a = 3.6 A) which are the most likely to describe reality at zero pressure. We verified 
this by a few orientational calculations of the To(r) frozen phonon at different pressures, 
and the band-structure calculations performed in [9] at different pressures support the 
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Figure 6. Band structure of LiH calculated within the LDA at U = 3.7 A (near the predicted 
equilibrium). The gap obtained at Xis 2.14 eV. 

same idea. The question is what are the probable reasons for the approximately 10% 
error in ao, larger than is usual in this type of calculation. The zero-point vibrations go( 1.’) 
have already been eliminated above; they are not the main reason for the disagreement. 
One can still question the form of the DF and the pseudopotential. 

The present calculations were performed with the Ceperley-Alder exchange and 
with the 1 = 0 pseudopotential selected as the local component. A few orientational 
calculations done at lower cut-offs revealed that using the Wigner formula for exchange- 
correlation moves the calculated minima imperceptibly (towards larger a).  Using for H 
the full Coulomb potential moves the position of minimum also very little (towards 
smaller a).  Choosing a different component of the pseudopotential as the local one ( I  = 
2for Li and H) shifts the position of minimum by about 5% towards still lower values of a. 
Using the Vcore in [29] as the local component does not give any substantial improvement, 
either. 

We carefully examined whether the discrepancy could be caused by the large spatial 
extent of the d wavefunctions in both Li and H. In fact, the cut-off radii rCl actually used 
for generating the 1 = 2 components of the pseudopotentials in [29] sum [39] to 4.8 au, 
which is 25% more than the observed Li-H spacing at equilibrium. This means that the 
d contributions to the wavefunctions overlap already in the ‘pseudised’ regions, where 
the pseudopotential description does not apply. As it has been verified [39] that the Li 
pseudopotential in [29] without the d component and the H pseudopotential with only 
the s component reproduce the atomic states of the Li and H atoms in many excited 
configurations as successfully as the ‘complete’ pseudopotentials, we carried out the 
structural determination on LiH also with these pseudopotentials. As a result, one 
obtains a slight improvement in the bulk modulus (by about -0.1 Mbar) but the lattice 
constant does not change by more than +0.02%, which demonstrates the relatively small 
importance of the d contributions to the wavefunctions. The suitability of employing 
the full Coulomb potential for H was rechecked in this context, as well. In all these 
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verifications the Vcore in [29] was chosen as the ‘local’ component; the two special points 
used for sampling and the energy cut-off were gradually increased up to 72 Ryd (without 
the Lowdin perturbation)-which allowed us to confirm once more that the 60 Ryd cut- 
off is sufficient for obtaining converged structural and static properties?. 

The problem of the approximately 10% discrepancy in the lattice constant thus 
remains to a large extent unexplained. The main cause of disagreement is not the LDA 
itself because systems such as metallic Li [36] or even solid H [40] have been successfully 
described within this approximation. After the pseudopotential, one can still question 
the rigid-core approximation underlying the use of any pseudopotential; this assumption 
may be inadquate in Li. 

5. Conclusion 

The DF theory was used to study the structural and static properties of LiH from first 
principles; the role of zero-point vibrations was discussed and different estimates for the 
volume variations of this contribution were proposed and compared. The real-space 
distribution of electronic charge density was studied in detail; contour plots in selected 
planes and pressure variation in the charge along the principal symmetry directions were 
given. The calculations revealed a spherical charge distribution typical of ionic bonding 
and a strong charge transfer from Li to H .  Integration of charge density was attempted, 
with the aim of assigning definite values of charge to the individual atoms and comparing 
with the same quantities determined from x-ray measurements. The reason for the 10% 
disagreement between the calculated and experimental lattice constant could not be 
conclusively identified; several plausible causes were examined and had to be rejected. 
Finally the DF band structure of LiH is calculated and compared with previous deter- 
minations within the Hartree-Fock scheme. 
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Note added in proof. The band gap of LiH was recently determined experimentally [41] to be 4.94 eV. After 
the present work was completed, results of theoretical studies of the equation of state and the Bl-B2 transition 
by the APW method have been published [42]. Also, it has been shown [43] that converged results can be 
obtained with plane waves when the full, unscreened Coulomb potentials are used for both Li and H (i.e. +3/r 
and +l/r instead of pseudopotential); a good agreement of the ground-state properties with experiment is 
obtained in this way (ao = 3.9 A, when the zero-point vibration term is not included). 
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